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Ballistic magnetothermal transport in a Heisenberg spin chain at low temperatures
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We study ballistic thermal transport in Heisenberg spin chain with nearest-neighbor ferromagnetic interac-
tions at low temperatures. Explicit expressions for transmission coefficients are derived for thermal transport in
a periodic spin chain of arbitrary junction length by a spin-wave model. Our analytical results agree very well
with the ones from nonequilibrium Green’s function method. Our study shows that the transmission coefficient
oscillates with the frequency of thermal wave. Moreover, the thermal transmission shows strong dependence on
the intrachain coupling, the length of the spin chain, and the external magnetic field. The results demonstrate
the possibility of manipulating spin-wave propagation and magnetothermal conductance in the spin-chain
junction by adjusting the intrachain coupling and/or the external magnetic field.
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I. INTRODUCTION

Thermal transport properties of low-dimensional systems
have gained much attention recently.! Intensive studies in
low-dimensional systems have made some important
progress not only in understanding the underlying physical
mechanism but also in controlling of heat. In particular, sev-
eral conceptual thermal devices have been proposed such as
thermal rectifiers or diodes,? thermal transistors,” thermal
logical gates,* thermal memory,”> and some molecular level
thermal machines.®’” Much work has also been done to the
quantum transport in nanostructures.®

Low-dimensional systems, especially one-dimensional
(1D) materials, offer the possibility to study quantum effects
that are masked in three-dimensional systems. In recent
years, many interesting experiments on thermal transport in
1D spin chains’~!? are performed, where the 1D-spin-chain
compound materials give us nice physical realizations of 1D
toy model systems. From these experiments, it is possible to
control heat transport in spin systems by a magnetic field.
There are also theoretical studies about thermal transport in
1D spin chains, some of which show anomalous transport
due to the integrability,'3>-'® such as the anisotropic Heisen-
berg S=1/2 model, the -V model, and the XY spin chain.
The properties of energy transport through the chains differ
for different anisotropies of the intrachain spin interactions.
In all spin systems, the mean-free path of itinerant spin ex-
citations increases as temperature decreases. Therefore in the
low-temperature limit, the thermal transport in spin chain can
be regarded as ballistic.

The phononic transmission coefficients in quasi-one-
dimensional atomic models can be calculated by transfer-
matrix method.!”29 However, if there are evanescent modes
with large |[\| (\ is an eigenvalue of the transfer matrix), the
evaluation of the transfer matrix can be numerically rather
unstable, particularly when the system size becomes large.
Alternatively, nonequilibrium Green’s function (NEGF) is an
efficient method to calculate the transmission coefficient.
Unfortunately, both of these two methods cannot give an
analytical expression easily.
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In this paper we give an explicit analytical expression of
transmission coefficient through a spin-wave model from a
wave scattering picture. Here we study magnetothermal
transport in an isotropic Heisenberg spin junction coupled to
two semi-infinite spin chains in equilibrium at different tem-
peratures. By Holstein-Primakoff?! transformation we map
the spin operators to spinless boson operators and consider
only the harmonic terms of Hamiltonian in the low-
temperature limit, which is discussed in Sec. II. The analyti-
cal solution from the spin-wave model is shown in Sec. III;
we get the explicit formula for transmission coefficient. In
Sec. 1V, we introduce the nonequilibrium Green’s function
method and use it to study thermal transport. The results and
discussion are given in Sec. V. A short summary is presented
in Sec. VL.

II. MODEL

The Heisenberg spin chain consists of three parts: two
semi-infinite leads and a junction region (see Fig. 1). The
two leads are in equilibrium at different temperatures 7; and
Tg. We apply different external magnetic fields to the three
parts along z direction. So the Hamiltonian of this system is
given by

H=_2Ji(§i'§i+1)—zhisf, (1)
where J; is the interaction between spin site i and i+ 1 and 4;

is the magnetic field applied to spin site i. Using Holstein-
Primakoff transformation,?!

FIG. 1. (Color online) The system is an infinite Heisenberg spin
chain, which consists of two semi-infinite leads with an arbitrary
junction region. The two leads are in equilibrium at different tem-
peratures T; and Tg. We can apply different magnetic fields to the
three parts.
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S*=v2S-a*aa, S =a*\2S-a*a, S‘=S-a'a,

()

it is easy to map spin operators to spinless boson operators
a*,a. In the low-temperature limit, (a*a)<2S, we obtain the
following Hamiltonian by neglecting the terms containing
products of four or more operators:

i.J
where E0=—Ei(J,-SZ+h[S), and Kii: (Ji—l +Ji)S+hl' and Ki,i+1
=K1 ;=—J;S, where S, which can be any integer and half-
odd-integer, is the maximum value of spin. We choose S=1,
without loss of generality.

III. ANALYTICAL SOLUTION FROM THE SPIN-WAVE
MODEL

Because only harmonic terms are contained in the Hamil-
tonian, we can assume a spin-wave solution transmitting
from the left lead to the right lead through the junction re-
gion. We consider the two leads as uniform spin chains of
intrachain spin coupling J; in a magnetic field /;. The junc-
tion has an alternating coupling, J; and J,, in a field h. The
unit cell of the junction part contains two spin sites. We
assume an incident wave as Me'®. When it arrives at the
center part, it partially will be reflected and partially will be
transmitted. The reflected wave is rA[’e”™' and the transmis-
sion wave can be written as

o
Piame1 =UN) € o

, (4)

®jom = o\ e, (5)

The coefficients r, u, and v are obtained from the continuity
condition at the interface. The transmission wave will be
reflected and transmitted by the right end of the junction; the
amplitudes of reflection wave are ur,; and vr,, for the odd
site and even one, respectively. The transmission wave from
the right end is

®;= u)\étl)\fie‘i“”, (6)

where L=N-1, N is the number of sites in the junction part.
The reflection wave will be reflected (r,, of amplitude) at the
left end again and then reflected again. Finally the total wave
function transmitted from the junction is a superposition of
multiple reflections and transmissions,

®j= u)\li(l + rulru2)\%L + (rulruZ)\%L)2 + ')tl)\]ie_iwt‘ (7)

From the time dependent Schrédinger equation,
d
i Y=HY, V= (¢, (8)

where we set i=1 for simplicity; we can get the dispersion
relations for the leads A;=¢'/! and for the junction \,=¢'?2 as

w—(2JL+hL)=—JL()\i+)\1>, (9)
1
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1
[w-(J, +J2+h)]2=Jf+J§+J1J2(P +)\§). (10)
2

Which root of the equations should we use? By adding a
small imaginary part to w, that is, replacing it by w+i7, then
none of the eigenvalues A will have modulus exactly 1. Con-
sidering 7 as a small perturbation, we find for the traveling
waves??

|>\|=1—7,S, S (11)

That is, the forward moving waves with group velocity
v>0 have [\|<1. In the formulas below, we take the root
with |\| < 1. The energy band for our model (J, <J,) is

([ hh+2JJU[h+2]5,0h+2(J,+Jy)]) N [A kb +4d,].
(12)

Finally, we obtain the transmission coefficient (for N odd) as

~ Mtl}\[i 2
T(w) = 13
( ) ‘l_rulruZ)\gL ( )
Here,
_ w—(]1+.]2+h)_ ]l/)\2+]2)\2 (14)
“= J])\2+J2/)\2 a w—(]1+12+h)’
J (1=
u= 1 ) , v=ua, (15)
‘]L_JZ_)\IJL+0[JZ/)\2
- __w—(]L+12+h)+a'J2/)\2+JL)\1 (16)
ul w—(JL+12+h)+J2)\2/C¥+JL)\l’
w—(JL+J1+h)+J1/(a7\2)+J,_7\1 (17)
rypy=-— s
uz w—(JL+J1+h)+J17\2a+JL)\1
rv1=ru1/a’ rp=rpa, (18)
h=Nl+r,), H=N(1+7,). (19)

If the number of the sites is even, that is, the length of the
chain is odd, the transmission can be written as

~ uNst 2

Tw)=|—""""—1|, 20
@ 1_”;1ru2)\§L 20
ry = a?r, 1 = at. (21)

If J,=J,, all the formulas are reduced to those of the uniform
spin chain. Although we only discuss the period-two spin
chain, it is easy to derive similar formulas of transmission
coefficient for any other arbitrary periodic junction by this
method.

For a ballistic transport, the thermal current can be written
as a Landauer-type expression,
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1 (7 —
= z_f olfi(w) = frlo) ] T(0)do. (22)
m™Jo
The conductance is

dwa(w)—T. (23)

IV. NONEQUILIBRIUM GREEN’S-FUNCTION
METHOD

From the discussion in Sec. II, we can write the Hamil-
tonian, by neglecting the ground-state energy E, as follows:

m
Im

H= H,+ (z (@*VECAC 4 aCHyCEgh) +H.c.), (24)

where H,=2,,a;/" K], ar, with a=L,C,R, where L,C,R de-

note left lead, center part, and right lead, respectively. The
Hamiltonian matrix of the full linear system is

K, Vie O
H=|Vc Kc Ver | (25)

We use nonequilibrium Green’s function method® to study
the thermal transport in the spin chain. First we define the
retarded Green’s function as

G(t,t')=—i0t -1t )[a(t),a*()]). (26)

In nonequilibrium steady states, Green’s function is time-
translationally invariant and so it depends only on the differ-
ence in time. The Fourier transform of G'(t—t')=G"(z,t") is
defined as

Glo]= f v G'(t)e'dt. (27)

We also need the advanced Green’s function,

G(r.') =i0(t" — )([a(r),a*(t')]), (28)
the “greater than” Green’s function,
G~ (t,t")=-ia(t)a*(t")), (29)
and the “less than” Green’s function,
G=(t,t")=—i{a*(t")a(?)). (30)

Without interaction, the free Green’s functions for three parts
in equilibrium can be written as

[(w+in) - K,]go(w) =1, a=L,C.R,
ga(w) =g (o). (31
There is an additional equation relating g” and g<,
¢~ (0) = flw)[g"(w) - g"(w)], (32)

where f(w)=(a*a)y=[e”T-1]" is the Bose-Einstein distribu-
tion function at temperature 7; we have set the Boltzmann
constant kz=1.
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The energy current flow from the left lead to the central
region is

I,=~(H,), (33)
which can be expressed by Green’s function as

I, = lim T{V, K, G o(t,t") = G (t,t K V). (34)

t'—t

In frequency domain, the current expression can be written
as

” dw
IL =- J Tr{GzL(O))KLVLC - VCLKLGiC(w)}ZT . (35)

Because of the following relations,

Kogo =82 K,=0g, ", (36)
Gee=8c+8c2Gecs (37)
2 :EL'*'ER’ 20(: VCagaVaC’ (38)

Gre=81VicGees (39)

the current <I)=%(<IL>—(IR)) can be reduced to Landauer-
type expression [Eq. (22)], where the transmission coeffi-
cient is

Ger=GecVergr

T(w) = TH{G TGl L) (40)

The I',, functions are given by I' ,=i(2) -3%).

For the 1D spin junction coupled to two semi-infinite
leads, which are uniform spin chains of intrachain interaction
J; in a magnetic field &;, the transmission coefficient can be
written as

T(w) =471 Im(gh) PGy o/ (41)

where go,=—N\;/J;, \; is given by Eq. (9), Green’s function
G is abbreviated as G, and

D",

Grnoip= (‘U—KC—E)&I_L(): (42)

det(w-Kc-3)°

JJ.
For N=3, we can get G20=m, where a=w—-J;—J,
’ “—aJi—CcJ7

—h—Jig(’), b=w-J,-J,—h, and c=w—JL—Jz—h—Jig6. For
general N, it is difficult to get an explicit formula.

V. RESULTS AND DISCUSSIONS

In our calculations, we take kz=1 and A=1. The unit of
coupling J is 1 meV, the unit of magnetic field is 17.5 T, the
unit of temperature is 11.6 K, and the unit of conductance is
3.86X 1072 nW/K.

If the whole system is uniform, i.e., the magnetic fields
applied to the three parts—two leads and the junction—are

the same, the transmission coefficient T(w) is always 1 in the
whole domain [/,h+4J]. However, if the magnetic fields in
three parts are different, e.g., #>0 in the junction and h;
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FIG. 2. (Color online) The transmission coefficient of the uni-
form spin chain with coupling J=1. We apply a magnetic field to
the junction. The transmission T(w) shifts along the frequency axis
with magnetic field and oscillates with frequency in the range of
[1,4]. The number of sites in the junction part is N=9, with mag-
netic field 2=1. The scattered crosses and solid line correspond to
the results from NEGF and the spin-wave model, respectively. The
inset shows the case with a weak magnetic field, #=0.05. The num-
bers of peaks is N—1.

=0 in the two leads, the transmission coefficient oscillates
with frequency o in the domain [h,4J], where the whole
system has the same intrachain coupling J. If the magnetic
field is weak, the oscillation region is very near to 1, and the

number of peaks [T(w)=1] is equal to N—1. With the
strengthening of magnetic field in the junction, the transmis-

sion T(w) shifts along the axis of frequency o, the oscillation
range extends to the domain [0,1], and some peaks will be
cut off because of the shift of the curve. The numerical re-
sults come from NEGF are exactly the same with analytical
solution from the spin-wave model, which is shown in Fig. 2.
All the phenomena are still the same when the size of the
spin chain is very large. However, for small size spin chain,
the transmission at the forbidden band is not zero because of
quantum tunneling effect, which can be given from both of
the two methods and the results are exactly consistent. The
shift and oscillation of transmission coefficient are due to
interference of the spin-wave transmission through the junc-
tion.

If the intrachain spin coupling of junction is different
from that of leads, the transmission coefficient oscillates also
with the frequency. In Fig. 3, we show that the transmission
coefficient for the junction with periodic coupling, J;=1,
J>=0.5, and the leads with J=1, oscillates with frequency in
the energy bands [0,1] and [2,3] which is consistent with Eq.
(12). From this figure, it can be further concluded that our
analytical results from the spin-wave model are exact. The
numerical results from NEGF method are consistent with
this analytical approach.

When an external magnetic field A=1 is applied to the
junction part, the transmission coefficient shifts to
[1,2]U[3,4], and the oscillation shape changes, which is
shown in Fig. 4. The shapes of oscillation are different for
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FIG. 3. (Color online) The transmission coefficient of the junc-
tion part with periodic coupling J;=1 and J,=0.5. There is no mag-
netic field applied to the spin chain. The transmission oscillates in
the bands of [0,1] and [2,3], which is consistent with Eq. (12). Here,
the number of sites in the junction part is N=33. The crosses and
solid line curve correspond to the results from NEGF and spin-wave
model, respectively. The inset shows the fine curves in the range of
w €[0.5,0.6] and [2.5,2.6]. The results from two methods are con-
sistent with each other.

odd-site and even-site junctions. For the even-site junction,
the spin chain is symmetric along the chain direction, while
it is asymmetric for odd-site case. Therefore, the reflection in
two ends of the junction for asymmetric chain is different,
which causes the difference of the transmission compared
with symmetric case.

From the above results, we know that the periodicity of
the junction can give rise to gaps in the transmission. Can we

1.0

FIG. 4. (Color online) The transmission coefficient of the peri-
odic intrachain coupling junction in an external magnetic field &
=1. Here, the coupling of leads J;=1 and J;=1, J,=0.5 for the
junction. The upper and lower panel are for N=33 and N=34, re-
spectively. The results of the spin-wave method (solid line curve)
[for N=33 and N=34, we use Eq. (13) and Eq. (20), respectively]
are identical with the numerical results from NEGF (the scattered
Crosses).
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FIG. 5. (Color online) The transmission coefficient for junctions
connected in series. Here, every segment has five sites and all seg-
ments in a magnetic field of #=0.2 are connected by a spin with no
magnetic field. (a), (b), (c), and (d) correspond to 1, 2, 8, and 32
segments, respectively. For 32 or more segments, there are obvious
five gaps (forbidden bands), i.e., six transmitted bands, which is due
to the period of magnetic field along the chain; here the period is
equal to 6 (five sites with magnetic field plus one spin with no
magnetic field).

merely apply magnetic field periodically to the junction to
induce gaps in the transmission, while the whole system has
the same coupling J=1, so that we can choose the frequency
to transmit from the junction? It is possible because the
transmission oscillates with frequency when the junction is
subjected to a magnetic field. If we connect many junctions
in series, then the range of oscillation extends and may give
gaps in transmission. In Fig. 5, at first we let the heat transfer
through a five-site junction in a magnetic field 2=0.2, then
the transmission oscillates a little near 1; if we connect two
junctions together by a site without magnetic field, that is,
N=11, h(i=1-5;7-11)=0.2, and h(6)=0, the oscillation
will be extended. The gaps are shown evidently when 32 or
more segments are connected in series by the sites without
magnetic field. For a fixed size junction, if we apply mag-
netic field periodically, there are p—1 gaps (p is the period of
magnetic field along the junction) in the transmission, which
are shown in Fig. 6. Therefore, we can choose the frequen-
cies to transmit through the junction by adjusting the period-
icity of the intrachain coupling or the magnetic field.

We can calculate the thermal conductance from transmis-
sion coefficient. In Fig. 7, we show the thermal conductance
versus system size, temperature, and magnetic field for uni-
form and periodic spin chain. It is shown that the conduc-
tance is independent of the system size because of ballistic
transport while the oscillation of transmission coefficient
changes with the system size. The conductance increases to a
constant with the increase in temperature, which is consistent
with all other ballistic cases. From Fig. 7(b), we see that the
conductance decreases to zero as the intensity of magnetic
field is increased. These results indicate that the transmission
coefficient will shift along the axis of frequency, which cuts
off the contribution of low frequency to the thermal current;
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FIG. 6. (Color online) The transmission coefficient for a fixed
junction in different periods of magnetic field. The total number of
sites is N=191. The magnetic field is applied to the junction as
h(pXm)=0, m=1,2,3,..., others=0.5, and p is the period of mag-
netic field along the junction. (a), (b), (c), and (d) correspond to
uniform, p=2, p=6, and p=12 magnetic fields, respectively. It is
shown that there are p—1 gaps for different cases.

therefore the thermal current decreases. Because the thermal
wave of low frequency contributes most to the heat flux, the
thermal conductance decreases quickly with the increase in
the intensity of magnetic field. Although the transmission has
a big difference for uniform and periodic chains, the thermal
conductance has the similar behavior merely with a differ-
ence of magnitude.

VI. CONCLUSION

In this paper, we have studied the ballistic magnetother-
mal transport in a Heisenberg spin chain at low temperatures.
We have obtained explicitly an analytical expression for the
transmission coefficient through a spin-wave model from a
wave scattering picture. The analytical results have been
verified by the nonequilibrium Green’s function method. We

FIG. 7. (Color online) (a) The thermal conductance, o, versus
system size, N, and temperature 7. o increases with temperature to
a constant whereas it keeps invariant with system size, where mag-
netic field is 2#=0.5. (b) The thermal conductance o versus magnetic
field, &, and temperature. It shows that the conductance decreases to
zero with strengthening magnetic field at different temperatures.
The upper blue surface and lower black surface correspond to uni-
form (J=1) and periodic (J;=1, J,=0.5) spin chains, respectively.
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have found that the transmission coefficient oscillates with
the frequency because of interference of the transmission
waves; furthermore, the thermal transmission coefficient
shows strong dependence not only on the intrachain coupling
and length of the spin chain but also on the external magnetic
field. There are gaps in the transmission and the number of
gaps is equal to p—1, where p is the period of intrachain
coupling or the external transverse magnetic field applied to
the junction; i.e., the number of transmitted bands is equal to
the value of periods. Therefore, it is easy to choose special
frequencies to transmit through the spin-chain junction by
adjusting its intrachain coupling or the external magnetic
field and the heat current in the junction can be switched off
with the magnetic field strengthening. The thermal conduc-
tance of Heisenberg spin chain at low temperature tends to a
constant with the increasing temperature, decreases to zero
with intensity of the magnetic field, while it has no depen-
dence on the system size.
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Our analytical spin-wave model solution can be applied to
the ballistic magnetothermal transport in an arbitrary peri-
odic spin chain. The properties of the magnetothermal trans-
port found in this paper provide the possibility to manipulate
magnetothermal conductance and the propagation of spin
waves in the Heisenberg spin chain, which may have poten-
tial applications in thermal control and designing of filter and
waveguide for spin waves.
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